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Sign ambiguity in configuration mixing and coupled channel calculations
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In this paper we discuss the problem of sign ambiguity, which is common both to first and second order
configuration mixing in structure calculations, as well as to the coupled channel method for scattering prob-
lems. The sign ambiguity propagates into reduced matrix elements and/or into scattering amplitudes; the
assertion that these quantities can be extracted from data analysis, including their signs, in order to be com-
pared with theoretical models, is incorrect. The measurable quantities, as derived from density matrix, are
insensitive to both initial and succesive sign changes in the calculafi®h863-651X96)10907-1

PACS numbsgps): 02.70—c, 21.60-—n, 24.10.Eq, 03.65.Ge

The aim of this paper is to discuss the problem of signbasis vectors have correct signs, irrespective of whether basis
ambiguity, specific to computational methods used in nucleavectors did or did not have initially correct signs. The rela-
structure configuration mixing and coupled channel calculative signs between the componeitégnplitudes multiplying
tions. The wave functions resulting from configuration mix- basis vectonsof the wave functions, resulting from a second-
ing have an overall sign ambiguity. The numerical results agrder configuration mixing, remain unaltered. The wave
transition operator matrix elements, channel coupling elefunctions obtained in second order configuration mixing cal-
ments orS-matrix elements conserve the sign ambiguity re-culations are, as in first order calculations, determined up to
sulting from configuration mixing calculations, but the den-an overall sign.
sity matrix is free from sign ambiguity. The sign ambiguity appearing in the description of the

In configuration mixing calculations one has to solve anuclear structure will be illustrated in the case of the inter-
homogeneous system of linear equations in order to find thacting boson modeliBM) for the **%Cd nucleus. We use a
amplitudes of the wave functions in a given basis, 1.,  configuration mixing IBM-2 calculationf#] with typical pa-

The solution of a system df linear equations is determined rameters taken from literaturs], our goal being only to

up to an arbitrary multiplicative constant, provided its rank isillustrate the sign ambiguity and not to compare the calcula-
N—1, e.g.,[2]. The magnitude of this constant can be fixedtions with experimental data.

by the normalization conditiofthe sum of the squared am- The calculations are carried out in two steps. In the first
plitudes must be unily but not its sign. This is the sign step the HamiltoniaH is diagonalized for each configura-
ambiguity for configuration mixing calculations met in tion separately in the usual $8&) basis,

nuclear structure studies; the well-known example is the con-
figuration mixing for two states, e.gl1]. The wave func-
tions resulting from this procedure are determined up to an
overall (=) sign. It should be evinced that the magnitudes as
well as the relative signs of the wave-function components,
(amplitude$ are calculated correctly.

In usual, say, first-order, configuration mixing calcula-
tions, the basis vectors are defined including their signs; ex-
amples of such basis vectors could be the unperturbed single- Voo 2
particle states in shell-model calculatidrig, or SU5) basis
vectors in the interacting boson mod@l. In second-order
configuration mixing calculations, one uses as basis vectors
the wave functions obtained in first-order mixing calcula- ~ i
tions[3]; the vectors of this basis, obtained up to an overall Q,=(shd,+ds,)@+x(d]d,)® 2
sign, can have flipped signs. If the vectar$,k have the
signs changed, this will result in changed signs of the rowsire the quadrupole operators with=,v. In the second
and columns labeled hyj,k in the Hamiltonian matrix. The stepH+H,,, is diagonalized in a basis provided by the four
new system of homogeneous linear equations is equivalent lowest eigenstates of the two configurations where
the system with correct signs, provided the amplitudes la-

beled by the indices andj andk change their signs too. As ‘ot © Pt LT T 0
a result, the products of amplitudes by the corresponding Hmix= a(S;S;+5,8,)" +B8(dd+dd)™. (3

H=edl.d +edld,+V, +V,,+kQ, - Q,+M,,,
(1)

1 _——
> cLV2L+1[(dTdh) - (d,d,) 1

L=0,2,4

1063-651X/96/5¢2)/21704)/$10.00 54 2170 © 1996 The American Physical Society



54 BRIEF REPORTS 2171

TABLE I. Reduced matrix elements of quadrupole operators First we use the original and the sign changed eigenstates,
between the unmixed eigenstates of first configuration; effect of th¢espectively, to evaluate the following reduced matrix ele-
sign change for @) and 22). ments(see Table)t

i) 1y(m) (sfd+d's)@ (dfd)@ (sfd+d's)@ (dfd)®@

21 o0(D -6.3010 0.0875 -1.1730 0.0406 <'i(”)||(de);2)”'f(m)>'
63010 00875  -1.1730  0.0406
2(1) 0(2  -31303 03143  -0.3119  0.0751 ~ o
31303  -0.3143 03119  -0.0751 (li(m|(s'd+d's),”[[I1(m)). (4)

21 0(@3 0.2524 0.2172 0.0445 0.0666
0.2524 0.2172 0.0445 0.0666 One observes that the signs of the reduced matrix ele-
2() 0% 0.0680 0.0418 -0.0920 0.0416 ments depend on the relative sign of the wave functions
0.0680 0.0418 -0.0920 0.0416 |1;(n)) and|l{(m)).
22 0(1 0.8026 0.4970 0.1772 0.1645 The original (“standard”) and sign changed eigenstates
-0.8026 -0.4970 -0.1772 -0.1645 oObtained diagonalizing the Hamiltonidh) were used to di-
22 0(2 -1.2481 1.7188 -0.3116 0.2051 agonalize the mixing Hamiltonian in the direct sum of the
-1.2481 1.7188 03116 02051 basis of the two configuratiorsee Table I\
22 03 -3.8962 -0.3056 -0.5387 .0.0867 One may observe that the components of the mixed wave
3.8962 0.3056 0.5387 0.0867 functions that belong to the second unmixed eigenstates of
22 04 -0.3838 -0.2488 -0.1039 0.0395 thg first c_:onf|gurat|or_1 change the sign. Morc_eover, _the seventh
0.3838 0.2488 0.1039 .00395 Mixed eigenstate witth =0 and the fifth mixed eigenstate
with L=2 orL=4 acquire a global sign change.
The mixed eigenstates mentioned abfistandard” and
The eigenstates obtained in the first step or in the secondith sign changed fof(7), 2(5), and 4(5) were used to
step were used to evaluate the reduced matrix elements fewvaluate the reduced matrix eleme(s
the multipole operators and in particular for the quadrupole As we can see in Table Ill, the signs of the reduced matrix
operatorg2). The reduced matrix elements of the multipole elements depend on the relative sign of the wave functions
operators can be used to describe the electromagnetic trangir(n)) and|l¢(m)).
tions or they give reduced matrix elements in the transition To conclude, there is no physical argument to fix the signs
potential for the coupled-channel analysis of nuclear reacef the wave functions in the IBM calculations. This ambigu-
tions[6] or for the Coulomb excitation analydig]. ity results in a sign ambiguity for the reduced matrix ele-
The real normalized solutions are determined up to a sigments of the multipole operators. This means that only the
in the SU5) basis. The arbitrariness is due to the numericakelative signs of the reduced matrix elements of the multipole
method as there are no physical arguments to choose tlaperators have a physical meaning and not their particular
signs. Therefore we consider the lowest four eigenstates ofalues. The conservation of relative signs of the reduced ma-
the Hamiltonian(1) for L=0, 2, and 4 in the two configu- trix elements of the multipole transition operators is of vital
rations. To see the effects of the sign ambiguity we changénportance because tlieonstructive or destructiyénterfer-
the signs of the second eigenstateslfer0, 2, and 4 in the ence depends on the relative signs of the terms in the wave
first configuration. functions.

TABLE IlI. Eigenstates of the mixing Hamiltonian in the unmixed basis; effect of the sign chang&jor 0
and 22) in first configuration.

I1(n) Energies Amplitudes Amplitudes
of first configuration of second configuration

0(1) 0.0000 0.9967 0.0052 -0.0016 -0.0002 0.0676 -0.0064 0.0440 -0.0029
0.9967 -0.0052 -0.0016 -0.0002 0.0676 -0.0064 0.0440 -0.0029
0(2) 1.2419 0.0426 -0.8240 0.0248 0.0270 -0.5589 0.0734 0.0037 -0.0097
0.0426  0.8240 0.0248 0.0270 -0.5589 0.0734 0.0037 -0.0097
0(6) 2.5740 -0.0192 -0.0105 -0.0159 0.9251  0.0478 -0.0866 0.3596  0.0656
-0.0192 0.0105 -0.0159 0.9251  0.0478 -0.0866 0.3596  0.0656
0(7) 2.8285 -0.0405 0.0014 0.0132 -0.3562 -0.0116 0.0224 0.9316 -0.0528
0.0405 0.0014 -0.0132 0.3562 0.0116 -0.0224 -0.9316 0.0528
0(8) 3.0455 -0.0020 0.0128 0.0287 0.0812 0.0033 0.0005 -0.0259 -0.9959
-0.0020 -0.0128 0.0287 0.0812 0.0033 0.0005 -0.0259 -0.9959
2(2) 0.6433 -0.9932 0.0002 0.0083 0.0000 -0.1039 0.0524 -0.0004 0.0032
-0.9932 -0.0002 0.0083 0.0000 -0.1039 0.0524 -0.0004 0.0032
2(5) 2.0050 0.0267  0.0427 -0.9163 0.0231 -0.1595 0.3322 -0.1459 0.0146
-0.0267 0.0427 0.9163 -0.0231 0.1595 -0.3322 0.1459 -0.0146
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TABLE lll. Reduced matrix elements of quadrupole operators between the mixed eigenstates of Table II.

li(n) I+(m) (s'd+d's)@ (d'd)@ (sTd+d's)® (dTdy@
2(1) 0(1) 6.3234 -0.0866 1.1860 -0.0388
6.3234 -0.0866 1.1860 -0.0388
2(1) 0(2) -2.8839 0.2381 -0.4310 0.0412
-2.8839 0.2381 -0.4310 0.0412
2(1) 0(6) -0.1846 -0.0417 0.0833 -0.0433
-0.1846 -0.0417 0.0833 -0.0433
2(1) 0(7) -0.2569 0.0040 -0.0784 0.0011
0.2569 -0.0040 0.0784 -0.0011
2(1) 0(8) -0.0141 -0.0101 0.0041 -0.0067
-0.0141 -0.0101 0.0041 -0.0067
2(5) 0(1) -0.6010 -0.0320 0.4295 -0.0242
0.6010 0.0320 -0.4295 0.0242
2(5) 0(2) 3.2473 0.0631 0.4069 0.0340
-3.2473 -0.0631 -0.4069 -0.0340
2(5) 0(6) 3.1663 -0.2346 0.4513 -0.0829
-3.1663 0.2346 -0.4513 0.0829
2(5) 0(7) -1.0541 0.3180 -0.0819 0.0362
-1.0541 0.3180 -0.0819 0.0362
2(5) 0(8) -0.0231 0.1912 0.0180 0.0628
0.0231 -0.1912 -0.0180 -0.0628

Usually it is stated that this overall sign ambiguity of the the logarithmic derivative matribR one constructs, in the
wave functions has no physical consequences, as long as theymptotic region, th& matrix
wave functions differing in phase represent the same state.
This assertion is true if we refer only to the magnitude of the
matrix elements, as, for example, the transition probabilities.
However, in some calculations one needs the matrix ele-

+ — +)r =) H H
ments, including their signs, and not only their magnitudesWhereH( ), HE), H)" HP) denote the diagonal matri-

For example, in coupled channel calculations one needs tHgfS Of the out and in waves and their derivatives, respec-
potential matrix element¥,,,=(m|V|n). If the wave func- tively. The change of signs of the row and columnin the

tion of the statem is affected by the sign ambiguity, this R matrix.will result in e_lchange of sign of the same row and
propagates to the rom, V., and to the columm, V, ., column in the S matrix. AII_ S-matrix elementsS,,, and
of the potential matrix. In the next step one has to solve anm (M fixed,n#m) connecting the channefarget nucleus

system of coupled Schdinger equations, whose potential Stat® m with other channelsn, change their sign,
matrix has a sign ambiguity for both columm and row irrespective of the other quantum n_umbers Iabell_ng the chan-
m. The regular solution of the system consist\iindepen-  N€ls (total angular momentum, orbital momenta in channels
dent solutionsX,,, (m,n=1,2,3,... N), whereN is the M andn). The transition amphtude_ fror_n |n|t|a! channel O to
number of the involved channel8]. The sign ambiguity in final channeff, Tq;, constructeq with klne_m_atlcal quantities
the potential matrix results in sign ambiguity of the solution (@ngular momentum  coupling  coefficients, spherical
matrix X=||X,,||; both row and colummm are affected. harmonic$ and with S matrix elementgsee, e.g.[8]), has

This property holds also for the logarithmic derivative of the the Same sign ambiguity. The density matrix for a given final
solutionR=X'X"1 (X' is the derivative matrix Indeed, for channelf, p;, is constructed in terms of the density matrix

S=[RH(+)—H(+)']_1[RH(_)—H(_)’],

a system of coupled Schdimger equations f(-)r. initial chgnnelpo and bilinear corqbinations of the .tran-
sition amplitudes terms,p;=TopoTg; iS free of sign
X"+(V—E)X=0, E=||E &l ambiguity. We conclude that the density matrix of final re-

actions channels and observables deriving frofaribss sec-
the logarithmic derivativeR is a solution of the Ricatti ma- tion, polarization are not sensitive to sign ambiguity but that
trix equation one cannot extract from measured density matrix the matrix

elements of the transition operators including their signs. The

R'+(V—E)+R?=0. inverse procedure of extracting reduced matrix elements

from density matrix experimental data results in correct
One can verify with this equation that ¥ changes signs in relative signs but remains, however, in an overall sign
the column and rown, so does the solutioR. Now, with  ambiguity.
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