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In this paper we discuss the problem of sign ambiguity, which is common both to first and second order
configuration mixing in structure calculations, as well as to the coupled channel method for scattering prob-
lems. The sign ambiguity propagates into reduced matrix elements and/or into scattering amplitudes; the
assertion that these quantities can be extracted from data analysis, including their signs, in order to be com-
pared with theoretical models, is incorrect. The measurable quantities, as derived from density matrix, are
insensitive to both initial and succesive sign changes in the calculations.@S1063-651X~96!10907-7#

PACS number~s!: 02.70.2c, 21.60.2n, 24.10.Eq, 03.65.Ge

The aim of this paper is to discuss the problem of sign
ambiguity, specific to computational methods used in nuclear
structure configuration mixing and coupled channel calcula-
tions. The wave functions resulting from configuration mix-
ing have an overall sign ambiguity. The numerical results as
transition operator matrix elements, channel coupling ele-
ments orS-matrix elements conserve the sign ambiguity re-
sulting from configuration mixing calculations, but the den-
sity matrix is free from sign ambiguity.

In configuration mixing calculations one has to solve a
homogeneous system of linear equations in order to find the
amplitudes of the wave functions in a given basis, e.g.,@1#.
The solution of a system ofN linear equations is determined
up to an arbitrary multiplicative constant, provided its rank is
N21, e.g.,@2#. The magnitude of this constant can be fixed
by the normalization condition~the sum of the squared am-
plitudes must be unity!, but not its sign. This is the sign
ambiguity for configuration mixing calculations met in
nuclear structure studies; the well-known example is the con-
figuration mixing for two states, e.g.,@1#. The wave func-
tions resulting from this procedure are determined up to an
overall (6) sign. It should be evinced that the magnitudes as
well as the relative signs of the wave-function components
~amplitudes! are calculated correctly.

In usual, say, first-order, configuration mixing calcula-
tions, the basis vectors are defined including their signs; ex-
amples of such basis vectors could be the unperturbed single-
particle states in shell-model calculations@1#, or SU~5! basis
vectors in the interacting boson model@3#. In second-order
configuration mixing calculations, one uses as basis vectors
the wave functions obtained in first-order mixing calcula-
tions @3#; the vectors of this basis, obtained up to an overall
sign, can have flipped signs. If the vectorsi , j ,k have the
signs changed, this will result in changed signs of the rows
and columns labeled byi , j ,k in the Hamiltonian matrix. The
new system of homogeneous linear equations is equivalent to
the system with correct signs, provided the amplitudes la-
beled by the indicesi and j andk change their signs too. As
a result, the products of amplitudes by the corresponding

basis vectors have correct signs, irrespective of whether basis
vectors did or did not have initially correct signs. The rela-
tive signs between the components~amplitudes multiplying
basis vectors! of the wave functions, resulting from a second-
order configuration mixing, remain unaltered. The wave
functions obtained in second order configuration mixing cal-
culations are, as in first order calculations, determined up to
an overall sign.

The sign ambiguity appearing in the description of the
nuclear structure will be illustrated in the case of the inter-
acting boson model~IBM ! for the 112Cd nucleus. We use a
configuration mixing IBM-2 calculations@4# with typical pa-
rameters taken from literature@5#, our goal being only to
illustrate the sign ambiguity and not to compare the calcula-
tions with experimental data.

The calculations are carried out in two steps. In the first
step the HamiltonianH is diagonalized for each configura-
tion separately in the usual SU~5! basis,

H5epdp
†
•d̃p1endn

†
•d̃n1Vpp1Vnn1kQp•Qn1Mpn ,

~1!

where

Vrr5 (
L50,2,4

1

2
cLrA2L11@~dr

†dr
†!~L !

•~ d̃rd̃r!~L !#~0!

and

Qr5~sr
†d̃r1dr

†sr!~2!1x~dr
†d̃r!~2! ~2!

are the quadrupole operators withr5p,n. In the second
stepH1Hmix is diagonalized in a basis provided by the four
lowest eigenstates of the two configurations where

Hmix5a~sp
†sp

†1spsp!~0!1b~dp
†dp

†1d̃pd̃p!~0!. ~3!
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The eigenstates obtained in the first step or in the second
step were used to evaluate the reduced matrix elements for
the multipole operators and in particular for the quadrupole
operators~2!. The reduced matrix elements of the multipole
operators can be used to describe the electromagnetic transi-
tions or they give reduced matrix elements in the transition
potential for the coupled-channel analysis of nuclear reac-
tions @6# or for the Coulomb excitation analysis@7#.

The real normalized solutions are determined up to a sign
in the SU~5! basis. The arbitrariness is due to the numerical
method as there are no physical arguments to choose the
signs. Therefore we consider the lowest four eigenstates of
the Hamiltonian~1! for L50, 2, and 4 in the two configu-
rations. To see the effects of the sign ambiguity we change
the signs of the second eigenstates forL50, 2, and 4 in the
first configuration.

First we use the original and the sign changed eigenstates,
respectively, to evaluate the following reduced matrix ele-
ments~see Table I!:

^I i~n!uu~d†d̃!r
~2!uuI f~m!&,

^I i~n!uu~s†d̃1d†s!r
~2!uuI f~m!&. ~4!

One observes that the signs of the reduced matrix ele-
ments depend on the relative sign of the wave functions
uI i(n)& and uI f(m)&.

The original ~‘‘standard’’! and sign changed eigenstates
obtained diagonalizing the Hamiltonian~1! were used to di-
agonalize the mixing Hamiltonian in the direct sum of the
basis of the two configurations~see Table II!.

One may observe that the components of the mixed wave
functions that belong to the second unmixed eigenstates of
the first configuration change the sign. Moreover, the seventh
mixed eigenstate withL50 and the fifth mixed eigenstate
with L52 or L54 acquire a global sign change.

The mixed eigenstates mentioned above@‘‘standard’’ and
with sign changed for0(7), 2(5), and 4(5)# were used to
evaluate the reduced matrix elements~4!.

As we can see in Table III, the signs of the reduced matrix
elements depend on the relative sign of the wave functions
uI i(n)& and uI f(m)&.

To conclude, there is no physical argument to fix the signs
of the wave functions in the IBM calculations. This ambigu-
ity results in a sign ambiguity for the reduced matrix ele-
ments of the multipole operators. This means that only the
relative signs of the reduced matrix elements of the multipole
operators have a physical meaning and not their particular
values. The conservation of relative signs of the reduced ma-
trix elements of the multipole transition operators is of vital
importance because the~constructive or destructive! interfer-
ence depends on the relative signs of the terms in the wave
functions.

TABLE I. Reduced matrix elements of quadrupole operators
between the unmixed eigenstates of first configuration; effect of the
sign change for 0~2! and 2~2!.

I i(n) I f(m) (s†d̃1d†s)n
(2) (d†d̃)n

(2) (s†d̃1d†s)p
(2) (d†d̃)p

(2)

2 ~1! 0 ~1! -6.3010 0.0875 -1.1730 0.0406
-6.3010 0.0875 -1.1730 0.0406

2 ~1! 0 ~2! -3.1303 0.3143 -0.3119 0.0751
3.1303 -0.3143 0.3119 -0.0751

2 ~1! 0 ~3! 0.2524 0.2172 0.0445 0.0666
0.2524 0.2172 0.0445 0.0666

2 ~1! 0 ~4! 0.0680 0.0418 -0.0920 0.0416
0.0680 0.0418 -0.0920 0.0416

2 ~2! 0 ~1! 0.8026 0.4970 0.1772 0.1645
-0.8026 -0.4970 -0.1772 -0.1645

2 ~2! 0 ~2! -1.2481 1.7188 -0.3116 0.2051
-1.2481 1.7188 -0.3116 0.2051

2 ~2! 0 ~3! -3.8962 -0.3056 -0.5387 -0.0867
3.8962 0.3056 0.5387 0.0867

2 ~2! 0 ~4! -0.3838 -0.2488 -0.1039 0.0395
0.3838 0.2488 0.1039 -0.0395

TABLE II. Eigenstates of the mixing Hamiltonian in the unmixed basis; effect of the sign change for 0~2!
and 2~2! in first configuration.

I (n) Energies Amplitudes Amplitudes
of first configuration of second configuration

0~1! 0.0000 0.9967 0.0052 -0.0016 -0.0002 0.0676 -0.0064 0.0440 -0.0029
0.9967 -0.0052 -0.0016 -0.0002 0.0676 -0.0064 0.0440 -0.0029

0~2! 1.2419 0.0426 -0.8240 0.0248 0.0270 -0.5589 0.0734 0.0037 -0.0097
0.0426 0.8240 0.0248 0.0270 -0.5589 0.0734 0.0037 -0.0097

0~6! 2.5740 -0.0192 -0.0105 -0.0159 0.9251 0.0478 -0.0866 0.3596 0.0656
-0.0192 0.0105 -0.0159 0.9251 0.0478 -0.0866 0.3596 0.0656

0~7! 2.8285 -0.0405 0.0014 0.0132 -0.3562 -0.0116 0.0224 0.9316 -0.0528
0.0405 0.0014 -0.0132 0.3562 0.0116 -0.0224 -0.9316 0.0528

0~8! 3.0455 -0.0020 0.0128 0.0287 0.0812 0.0033 0.0005 -0.0259 -0.9959
-0.0020 -0.0128 0.0287 0.0812 0.0033 0.0005 -0.0259 -0.9959

2~1! 0.6433 -0.9932 0.0002 0.0083 0.0000 -0.1039 0.0524 -0.0004 0.0032
-0.9932 -0.0002 0.0083 0.0000 -0.1039 0.0524 -0.0004 0.0032

2~5! 2.0050 0.0267 0.0427 -0.9163 0.0231 -0.1595 0.3322 -0.1459 0.0146
-0.0267 0.0427 0.9163 -0.0231 0.1595 -0.3322 0.1459 -0.0146
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Usually it is stated that this overall sign ambiguity of the
wave functions has no physical consequences, as long as the
wave functions differing in phase represent the same state.
This assertion is true if we refer only to the magnitude of the
matrix elements, as, for example, the transition probabilities.
However, in some calculations one needs the matrix ele-
ments, including their signs, and not only their magnitudes.
For example, in coupled channel calculations one needs the
potential matrix elementsVmn5^muVun&. If the wave func-
tion of the statem is affected by the sign ambiguity, this
propagates to the rowm, Vmn , and to the columnm, Vnm ,
of the potential matrix. In the next step one has to solve a
system of coupled Schro¨dinger equations, whose potential
matrix has a sign ambiguity for both columnm and row
m. The regular solution of the system consists inN indepen-
dent solutionsXmn (m,n51,2,3,. . . ,N), whereN is the
number of the involved channels@8#. The sign ambiguity in
the potential matrix results in sign ambiguity of the solution
matrix X5uuXmnuu; both row and columnm are affected.
This property holds also for the logarithmic derivative of the
solutionR5X8X21 (X8 is the derivative matrix!. Indeed, for
a system of coupled Schro¨dinger equations

X91~V2E!X50, E5uuEld lnuu

the logarithmic derivativeR is a solution of the Ricatti ma-
trix equation

R81~V2E!1R250.

One can verify with this equation that ifV changes signs in
the column and rowm, so does the solutionR. Now, with

the logarithmic derivative matrixR one constructs, in the
asymptotic region, theSmatrix

S5@RH~1 !2H ~1 !8#21@RH~2 !2H ~2 !8#,

whereH (1), H (2), H (1)8, H (2)8 denote the diagonal matri-
ces of the out and in waves and their derivatives, respec-
tively. The change of signs of the row and columnm in the
R matrix will result in a change of sign of the same row and
column in theS matrix. All S-matrix elementsSmn and
Snm (m fixed, nÞm) connecting the channel~target nucleus
state! m with other channelsn, change their sign,
irrespective of the other quantum numbers labeling the chan-
nels ~total angular momentum, orbital momenta in channels
m andn). The transition amplitude from initial channel 0 to
final channelf , T0 f , constructed with kinematical quantities
~angular momentum coupling coefficients, spherical
harmonics! and withS matrix elements~see, e.g.,@8#!, has
the same sign ambiguity. The density matrix for a given final
channelf , r f , is constructed in terms of the density matrix
for initial channelr0 and bilinear combinations of the tran-
sition amplitudes terms,r f5Tf0r0T0 f

† is free of sign
ambiguity. We conclude that the density matrix of final re-
actions channels and observables deriving from it~cross sec-
tion, polarization! are not sensitive to sign ambiguity but that
one cannot extract from measured density matrix the matrix
elements of the transition operators including their signs. The
inverse procedure of extracting reduced matrix elements
from density matrix experimental data results in correct
relative signs but remains, however, in an overall sign
ambiguity.

TABLE III. Reduced matrix elements of quadrupole operators between the mixed eigenstates of Table II.

I i(n) I f(m) (s†d̃1d†s)n
(2) (d†d̃)n

(2) (s†d̃1d†s)p
(2) (d†d̃)p

(2)

2~1! 0~1! 6.3234 -0.0866 1.1860 -0.0388
6.3234 -0.0866 1.1860 -0.0388

2~1! 0~2! -2.8839 0.2381 -0.4310 0.0412
-2.8839 0.2381 -0.4310 0.0412

2~1! 0~6! -0.1846 -0.0417 0.0833 -0.0433
-0.1846 -0.0417 0.0833 -0.0433

2~1! 0~7! -0.2569 0.0040 -0.0784 0.0011
0.2569 -0.0040 0.0784 -0.0011

2~1! 0~8! -0.0141 -0.0101 0.0041 -0.0067
-0.0141 -0.0101 0.0041 -0.0067

2~5! 0~1! -0.6010 -0.0320 0.4295 -0.0242
0.6010 0.0320 -0.4295 0.0242

2~5! 0~2! 3.2473 0.0631 0.4069 0.0340
-3.2473 -0.0631 -0.4069 -0.0340

2~5! 0~6! 3.1663 -0.2346 0.4513 -0.0829
-3.1663 0.2346 -0.4513 0.0829

2~5! 0~7! -1.0541 0.3180 -0.0819 0.0362
-1.0541 0.3180 -0.0819 0.0362

2~5! 0~8! -0.0231 0.1912 0.0180 0.0628
0.0231 -0.1912 -0.0180 -0.0628
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